Introduction to MATLAB and image processing

MATLAB and images

- The help in MATLAB is very good, use it!
- An image in MATLAB is treated as a matrix
- Every pixel is a matrix element
- All the operators in MATLAB defined on matrices can be used on images: +, -, *, /, sqrt, sin, cos etc.

Images in MATLAB

- Matlab can handle several image formats
 - BMP (Microsoft Windows Bitmap)
 - GIF (Graphics Interchange File)
 - HDF (Hierarchical Data Format)
 - JPEG (Joint Photographic Experts Group)
 - PCX (Paintbrush)
 - PNG (Portable Network Graphics)
 - TIFF (Tagged Image File Format)
 - XWD (X Window Dump)

- Data types in MATLAB
 - Double (64-bit double-precision floating point)
 - Single (32-bit single-precision floating point)
 - Int32 (32-bit signed integer)
 - Int16 (16-bit signed integer)
 - Int8 (8-bit signed integer)
 - Uint32 (32-bit unsigned integer)
 - Uint16 (16-bit unsigned integer)
 - Uint8 (8-bit unsigned integer)

- Most commonly used data types are double and uint8

Images in MATLAB

- Indexed images: m-by-3 color map
- Intensity images: [0,1] or uint8, double etc.
- Binary images: [0,1]
- RGB images: m-by-n-by-3

Image import and export

- Read and write images in Matlab
  ```matlab
  >> imread('tulip.jpg');
  >> imshow()
  ans = 479 600 3  [RGB image]
  >> imshow(rgb2gray());
  >> imshave(gray)
  >> imantsv(gray, 'cell_gray.tif', 'tiff')
  ```

Images and Matrices

- How to build a matrix (or image)?
  ```matlab
  >> A = [ 1 2 3; 4 5 6; 7 8 9 ];
  >> B = zeros(3,3)
  B =
    0     0     0
    0     0     0
    0     0     0
  >> C = ones(3,3)
  C =
    1     1     1
    1     1     1
    1     1     1
  ```

 >> imshow(A) (imshow(A,:)) to get automatic pixel range
Images and Matrices

- Accessing image elements (row, column)

 \[
 \text{A}(2,1) \]

 ans = 4

 : can be used to a whole column or row

 \[
 \text{A}(:,2) \]

 ans =

 2
 5
 8

 or a part of a column or row

 \[
 \text{A}(1:2,2) \]

 ans =

 2
 5

- Arithmetic operations such as addition, subtraction, multiplication and division can be applied to images in MATLAB

 \[
 \text{A} + \text{B} \]

 ans =

 2 4 6
 8 10 12
 14 16 18

 \[
 \text{A} \times \text{B} \]

 ans =

 30 36 42
 66 81 96
 102 126 150

- To perform an elementwise operation use \(\cdot, \div, \div, \cdot, \cdot \) etc

 \[
 \text{A} \cdot \text{B} \]

 ans =

 1 4 9
 16 25 36
 49 64 81

Logical Conditions

- \text{equal} (=), \text{less than} (<), \text{greater than} (>), \text{not equal} (\neq) and \text{not} (\not=)

- \text{find(condition)} - Returns indexes of A's elements that satisfies the condition.

\[
\begin{align*}
\text{row} & = 3 \\
\text{col} & = 1 \\
\text{row} & = 3 \\
\text{col} & = 2 \\
\text{row} & = 3 \\
\text{col} & = 3
\end{align*}
\]

Flow Control

- Flow control in MATLAB - if, else and elseif statements

\[
\text{if row==col} \\
\text{A(row, col)=1;} \\
\text{else if abs(row-col)==1} \\
\text{A(row, col)=2;} \\
\text{else} \\
\text{A(row, col)=0;} \\
\text{end}
\]

- While expression statements end

\[
\text{while A(index)>0} \\
\text{A(index)=0;} \\
\text{index=index+1;} \\
\text{end}
\]

\[
\text{A} =
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
\]

- Flow control in MATLAB - for loops

\[
\begin{align*}
\text{for row}=1:3 \\
\text{for col}=1:3 \\
\text{if row==col} \\
\text{A(row, col)=1;} \\
\text{else if abs(row-col)==1} \\
\text{A(row, col)=2;} \\
\text{else} \\
\text{A(row, col)=0;} \\
\text{end} \\
\text{end} \\
\text{end}
\end{align*}
\]

\[
\text{A} =
\begin{bmatrix}
1 & 2 & 0 \\
2 & 1 & 2 \\
0 & 2 & 1
\end{bmatrix}
\]
Working with M-Files

- M-files can be scripts that simply execute a series of MATLAB statements, or they can be functions that also accept input arguments and produce output.
- MATLAB functions:
 - Are useful for extending the MATLAB language for your application.
 - Can accept input arguments and return output arguments.
 - Store variables in a workspace internal to the function.

```matlab
function B=test(t)
    [row col]=size(t)
    for r=1:row
        for c=1:col
            if r=c
                A(r,c)=1;
                elseif abs(r-c)=1
                    A(r,c)=2;
            else
                A(r,c)=0;
            end
        end
    end
    B=A;
```

- Create a new empty m-file

```matlab
function y = fact(x)
    output argument
    input argument
    function name
    y= x = 0
    for n=1 to x
        y=y*n;
    end
    return y;
```

```matlab
function y = fact(x)
    output argument
    input argument
    function name
    y= x = 0
    for n=1 to x
        y=y*n;
    end
    return y;
```