A CBA Pub Evening

- Next Wednesday, March 2, CBA arrange a pub evening
- We meet downtown, instructions will follow via email/studentportalen
- This event is non-mandatory and it is not a part of the course

Reading Instructions

Chapters for this lecture

- Chapter 5.1 – 5.2, and 5.4 – 5.8 in Gonzales-Woods.

Today’s lecture

- General concepts of image restoration (5.1 – 5.2 and 5.5 in GW)
- Periodic noise reduction by frequency domain filtering (5.4 in GW)
- Inverse and Wiener filtering (5.6 – 5.8 in GW)

Image Restoration

- Restore an image that has been degraded in some way.
- Make a model of the degeneration process and use inverse methods.
- Image restoration is an objective method using a priori information of the degradation.
- Image enhancing is a method to present the image in a “visually appealing” way.
- Image reconstruction is when you make an image from a large set of measurements or projections.

Model

- \(f(x, y) \) is the original image.
- \(H \) represents the system that affects our image.
- \(n(x, y) \) is disturbance, e.g., noise or external contribution.
- Obtained degraded image \(g(x, y) = H(f(x, y)) + n(x, y) \).
- Possible defects in the imaging system causing degradation:
 - Bad focusing.
 - Motion.
 - Non-linearity of the sensor.
 - Noise.
 - etc...
Image Restoration

Some possible approaches:
- Inverse filtering.
- Try to model degradation effect.
- Use Fourier-domain methods and identify which frequencies are related to the degrading effect.

Mathematical Fundamentals - Convolution

Convolution of Two Continuous Functions
\[f(x, y) \otimes h(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\alpha, \beta) h(x - \alpha, y - \beta) \, d\alpha \, d\beta \]

Convolution by the Impulse Function
\[f(x, y) \otimes \delta(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\alpha, \beta) \delta(x - \alpha, y - \beta) \, d\alpha \, d\beta = f(x, y) \]

Simplified Model

- Assume a model without noise \(n \).
 \[g(x, y) = H[f(x, y)] \]
- Assume that the operator \(H \) is
 - linear: \(H[k_1 f_1(x, y) + k_2 f_2(x, y)] = k_1 H[f_1(x, y)] + k_2 H[f_2(x, y)] \)
 - additive: \(H[f_1(x, y)] + f_2(x, y) = H[f_1(x, y)] + H[f_2(x, y)] \)
 - homogeneous: \(H[k_1 f_1(x, y)] = k_1 H[f_1(x, y)] \)
 - position invariant: \(H[f(x - \alpha, y - \beta)] = g(x - \alpha, y - \beta) \)
- then, the following is true
 \[g(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\alpha, \beta) H[\delta(x - \alpha, y - \beta)] \, d\alpha \, d\beta \]

Impulse Response

Impulse Response for Degradation Function \(H \)
\[h(x, \alpha, \beta, \gamma) = H[\delta(x - \alpha, y - \beta)] \]
- In imaging systems the impulse response is called the point spread function (PSF).
- PSF describes how a point is imaged.

Fredholm Integral

Fredholm Integral or Superposition Integral of the First Kind
\[g(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\alpha, \beta) h(x - \alpha, y - \beta) \, d\alpha \, d\beta \]
- The Fredholm integral says that if the impulse response is known, the response to any input signal can be calculated.
- If degradation function, \(H \), is position invariant, the integral is reduced to the convolution integral:

Fredholm Integral of Position Invariant Degradation Function
\[g(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\alpha, \beta) h(x - \alpha, y - \beta) \, d\alpha \, d\beta \]

Point Spread Function

- Single impulse signal.
- Output blurred by the PSF.
- Two impulse signals.
- Output blurred by the PSF.
The (shift invariant) Model Revisited

In space: Convolution and addition
\[g(x, y) = f(x, y) \otimes h(x, y) + n(x, y) \]

In frequency: Multiplication and addition
\[G(u, v) = F(u, v) \cdot H(u, v) + N(u, v) \]

Fourier Methods

From Fourier Analysis:
- sinusoidal function in time (or spatial) domain of one variable corresponds to two impulse functions in Fourier domain.

Therefore,
- periodic noise in an image (i.e., repeated noise patterns) causes peaks in the FT of the image.
- by supressing these peaks and inverse transforming the image, a restored image is achieved.

Fourier Domain Filters
- Bandreject filters (ideal, Butterworth and Gaussian).

Notch filters (ideal, Butterworth and Gaussian).

Notch Filtering Example
- Original image.
- Fourier spectrum and it’s part removed with notch filter.
- Inverse transform of notch filtered image and result of notch filtering.

Inverse Filtering
- We can thus describe our model as \(g(x, y) = f(x, y) \otimes h(x, y) \).
- The Fourier transform gives
 \[G(u, v) = F(u, v) \cdot H(u, v) \Rightarrow F(u, v) = \frac{G(u, v)}{H(u, v)} \]
- By modeling the degenerating effect \(h \) and dividing the FT of the image by the FT of the model, we can get the FT of a restored image.
- The inverse transform gives the restored image.
- The method is called inverse filtering.
Problems with Inverse Filtering

At deconvolution, the FT of the image is divided by the FT of the degrading effect.

- If noise is present, we get \(g(x, y) = f(x, y) \ast h(x, y) + n(x, y) \)
- \(\hat{F}(u, v) = \frac{G(u, v)}{H(u, v)} = \frac{F(u, v) + N(u, v)}{H(u, v)} \)

Problems:
- Small values of \(H(u, v) \) can cause overflow (usually small at HF).
- If noise is included, it can be dominating.

Solutions:
- Perform division only in a limited part of the \((u, v)\)-plane.
- Use weights to limit the effect at division with small numbers.

Inverse Filtering Examples

- Original image.
- Full filter. Radius of 70.
- Degraded image. Radius of 85.
- Radius of 40.

Norbert Wiener (1894 – 1964)

Wiener Filtering

- We consider images and noise as random processes.
- We try to find an estimate \(\hat{f} \) of the uncorrupted image \(f \) such that the mean square error is minimized:
 \[
 e^2 = E \left\{ (f - \hat{f})^2 \right\}
 \]

 If we assume the following conditions:
 - Noise and image are uncorrelated.
 - One or the other has zero mean.
 - Greylevels in the estimate are linear functions of degraded image.

 then the minimum of the error function is given by:
 \[
 \hat{F}(u, v) = \frac{H^*(u, v) S_f(u, v)}{S_f(u, v) |H(u, v)|^2 + S_n(u, v)} G(u, v)
 \]

 - \(K \) is adjusted interactively for best result.

Filter Comparison

(See the original and degraded image in previous slide.)

- Full inverse.
- Limited inverse.
- Wiener filter.

Figure 5.29 in GW – another comparison!
Drawback with Wiener Filtering

- Must know (or approximate) the power spectra of undegraded image and noise.
- We cannot deal with a spatially varying noise or PSF

A good thing:
- Even correlated noise can be removed

A possibly better choice:
- Constrained Least Squares Filter (CLSF).
 - Need only knowledge of mean and variance of noise (apart from degradation function).
 - Only one parameter, which can be iteratively computed for optimality.

Periodic noise reduction revisited

- How would you apply the Wiener filter to this $|G(u, v)|^2$?

$$
\hat{f}(u, v) = \left[\frac{1}{|H(u, v)|^2 + \frac{\alpha}{\sigma(u, v)^2}} \right] G(u, v)
$$

Statistical Restoration

- Bayes theorem
 $$
P(f(x, y)|g(x, y)) = \frac{P(g(x, y)|f(x, y))P(f(x, y))}{P(g(x, y))}, \text{ or}

 P(f(x, y)) = \frac{P(g(x, y)|f(x, y))P(f(x, y))}{P(g(x, y))}
$$

- Find the most probable image, which generated $g(x, y)$
 $$
 \hat{f} = \arg \max_f P(g(x, y)|f(x, y))P(f(x, y)) = \arg \max_f P(g(x, y)|f(x, y))P(f(x, y))
 $$

- All linear theory (like the Wiener filter) is equivalent to a statistical approach based on Gaussian assumptions. The Wiener filter yields the most probable solution.

Restoration by Regularization

- Find \hat{f} so that it looks like f but is smooth ...
 $$
 \hat{f} = \arg \min_f \|g(x, y) - f(x, y)\|^2 + \alpha \|\nabla^2 f\|^2
 $$
 where ∇^2 refers to the scalar product of the gradient operator $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.

- We can use different norms too, for instance the L_1 (a.k.a. Total Variation denoising)
 $$
 \hat{f} = \arg \min_f \|g(x, y) - f(x, y)\|^2 + \alpha \|\nabla f\|^2
 $$

- Changing from L_2 to L_1 regularization can make a huge difference, edges are not punished as much for instance.
- Other things to penalize: Entropy of the histogram of f, penalize non-smooth functions, smooth functions.

Non-mandatory reading assignments

- Constrained Least Squares Filtering (CLSF) - section 5.9 in GW
- Mean Filters and order statistic filters in section 5.3 in GW
- Total Variation denoising: http://en.wikipedia.org/wiki/Total_variation_denoising
- Super resolution, e.g. http://people.csail.mit.edu/billf/superres/index.html