Scientific Computing, bridging course

Introduction

Stefan Pålsson, stefan.palsson@it.uu.se

Teacher

Stefan Pålsson, stefan.palsson@it.uu.se
Office: ICT 2309
Phone: 070 425 0213
+ TA:s on the labs

Bridging?

Bridging the gap between what you know and what you need to know (in scientific computing)

Preparing for Scientific Computing III and higher courses

Learning outcomes (goals)

To pass, the student should be able to:

- describe key concepts covered in the course (see Content) and perform tasks that require knowledge about these concepts;
- in general terms explain the ideas behind, and be able to use algorithms for solving linear systems, ordinary differential equations and for Monte Carlo simulations;
- analyse properties of the computational algorithms and mathematical models using the analytical tools presented in the course;
- discuss suitable methods and algorithms given a application problem

Furthermore

- given a mathematical model, solve problems in science and engineering by structuring the problem, choose appropriate numerical method and generate solution using software and by writing programming code;
- present, explain, summarise, evaluate and discuss solution methods and results.

Examined through assignments and workouts

Grades: U/G (fail/pass)

Text book

Michael T. Heath
Scientific Computing: an introductory survey
2nd ed. McGraw-Hill
Some questions

www.menti.com
code: 98 45 29

Scientific Computing?

• How can we foresee the path of Irma?
• Why do the plume get wider and wider?

Scientific Computing?

• Simulation with ensemble methods (some kind of Monte Carlo method)

Scientific Computing?

In general

• Computational methods and algorithms, problems that can’t be solved by hand or the ‘mathematical’ way.
We typically solve HUGE problems, i.e. protein structure prediction.

• What method fit a particular problem? Keep control of the errors
• Software and programming
The course structure

- Four themes

<table>
<thead>
<tr>
<th>1a Introduction: Matlab, Programming in Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b Introduction: Computer arithmetic and errors</td>
</tr>
<tr>
<td>2 Linear Equations</td>
</tr>
<tr>
<td>3 Ordinary Differential equations</td>
</tr>
<tr>
<td>4 Monte Carlo methods</td>
</tr>
</tbody>
</table>

Each block begin with a computer lab

- Computer lab
- Lectures
- Workout
- Problem solving

- All parts are tightly tied together
- Mandatory to do workout and assignments in time (other parts not mandatory)

But hey, let’s move on to the computer lab

- Log on to the Student Portal and find course page
- Find Lab Exercises in left margin
- Do Lab 1, Intro till Matlab (two parts)

Nothing to hand in! 😊