AI in Computer Games
why, where and how

Olle Gällmo
Who am I?

- Lecturer at Uppsala University, Dept. of information technology
- AI, machine learning and natural computation
- Daily 'gamer' since 1980
AI in Computer Games

- Goals
- History
- Common issues and methods
- Issues in various game categories
Goals

- Games are entertainment!
- Important that things behave naturally
 - not necessarily (or preferably) perfect
 - "things" are not always creatures
- Follow (the game's) natural laws
 - and avoid cheating
- Characters should be aware
Game AI (or is it AL?)

- Academic AI is usually concerned with making rational decisions
 - Searching for the optimal solution
- Game AI is more often about
 - Artificial Life
 - Believable behaviour
 - including stupidity!
 - realistic physics
 - Game balancing
 - challenging, but not unbeatable opponents
History -1980

- 1960's
 - First computer games
 - SpaceWar! (PDP-1, for two human players) (1962)
 - Board games (e.g. chess) against the machine

PDP-1

Chess
History - 1980

- **1960's**
 - First computer games
 - SpaceWar! (PDP-1, for two human players) (1962)
 - Board games (e.g. chess) against the machine

- **1970's**
 - Pong (early arcade game) (1972)
 - Computer controlled opponents
 - Space Invaders (1978)
 - Predefined patterns, no awareness
 - "AI" takes 1-2% of CPU
1980's

- Pac-Man (1980)
 - aware opponents with personality
- A computer beats a master chess player (1983)
- First fighting games
- Adventure games
 - Dungeon, Zork, ...
- First MORPG (MUD)
1990's

- FPS and RTS games
- Games about/with evolution and learning (Creatures, and (in 2001) Black&White)
- Deep Blue beats Kasparov (1997)
- Graphic cards take the load off the CPU
- AI takes 10-35% of CPU
2000-

- Focus shift from single- to multiplayer
- Focus shift from graphics to AI
 - and physics ...
- Large part of the code is AI code
 - often made from scratch for each game
- Less cheating
- Characters are more aware
 - thanks to better physics engines
- Characters collaborate better
2000- BIG industry

- In Sweden
 - +39%/year on average (2006-2014)
 - 12.5 bilj SEK turnover in 2016 (+7%)
 - Most of the (282) companies make +
 - 4291 employees (+550 in 2016)
 - 20-30% of the best games (various lists) were developed in Sweden
2000- BIG industry

- Internationally
 - 2.2 bilj players
 - 108 bilj USD (predicted sales 2017)
 - +56% growth over the last 5 years
 - Mobile games have 42% of the market

- Tough competition ("10 most sold games cover 80% of the market")

- Typical game project: 2 years, 70 people, 20+ milj USD (+ marketing)
Typical Game AI topics

- Strategical/tactical decisions
 - Against or with you
 - Search for best counter action
 - adaptivity

- Director level AI

- Simulation
 - of natural behaviour
 - for animation (e.g. bird flocks)

- Shortest path problems
Why is Game AI hard? (what makes it interesting to CompSci)

- Huge state space
- Huge action space
- Multiple tasks
 - on different levels of abstraction
 - of different types
- Non-deterministic
 - post-conditions difficult to set
 - makes planning difficult
- Often real time
Some common methods

- Minimax
 - logic games, search for best counter action
- Finite State Machines (FSM)
 - Behaviour
- A*
 - For shortest path problems
- Particle methods
 - Simulation of flocks, smoke, water, grass,…
- Smart terrain
Minimax (counter actions)

Variants: "α-β-pruning" and "expectimax"
Finite State Machines

Pacman ghost (red)

- Ghost Exits Center Room
- Pellet Wears Off
- Player Eats Pellet
- Run From Player
- Rise
 - Eyes Travel Back to Center
 - Die
- Player Dies
- Player Respawns
- Move Randomly
A* Algorithm

Distance from S + estimated distance to G

<table>
<thead>
<tr>
<th></th>
<th>3+8=11</th>
<th>2+7=9</th>
<th>3+6=9</th>
<th>4+5=9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+7=9</td>
<td>1+6=7</td>
<td>2+5=7</td>
<td>3+4=7</td>
<td></td>
</tr>
<tr>
<td>1+6=7</td>
<td>S</td>
<td>1+4=5</td>
<td>2+3=5</td>
<td></td>
</tr>
<tr>
<td>2+5=7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3+6=9</td>
<td>4+5=9</td>
<td>5+4=9</td>
<td>6+3=9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7+2=9</td>
<td>8+1=9</td>
<td></td>
</tr>
</tbody>
</table>
Reinforcement Learning
Best ≠ shortest
Smart terrain

- Store knowledge in objects instead of in the characters

 drink me! ➔ not thirsty, warm

- Easier to know what is relevant
- Easier to add new objects later

- Attributed to Will Wright (Sims)
Machine Learning?

- Game characters are short lived
- Learning requires many attempts

Keep it simple!

- Probabilistic methods (a la MENACE)
 - Director level AI
- Evolutionary methods
 - genetic algorithms and PSO
- Neural networks
 - in game development, but not often in game
MENACE

Plate 1. The original matchbox version of MENACE
AI in various game types

- Board games
- Role playing games
- Strategy games
- Racing games
- Platform and sports games
Board games

- Discrete time / turn based
- Often deterministic
- AI is in the opponent
- AI goal is non-typical (for games)
 - usually strives for optimality
- Tree search
- Library
- Reinforcement learning
Role Playing and Adventure

- AI in enemies, bosses, party members and other NPCs, ...
- Scripting, FSMs, Messaging
- Role Playing ≠ Combat
 - combat oriented games are simpler to make
- Conversations (grammar machines)
- Quest generators
- Towns

The Elder Scrolls IV: Oblivion (2006)
Town behaviour

Town behaviour

- Need-based system
 - Needs (e.g. hunger, business, ...)
 - Actions (e.g. eating, trading, ...)
 - "Need pathfinding"

- Problems
 - Finding people
 - Unwanted interaction between NPCs
Strategy games

- AI heavy (on both sides)
- Shortest path problems
- Strategical decisions
- Tactical decisions
- Town building and resource management
 - planning
- Indigenous life
- Reconnaissance (fog-of-war)
- Diplomacy
- Know thy enemy (observe and adapt)
Strategy games

Civilization III (2001)
Action games (FPS, TPS)

- Enemies
- Cooperative agents
- Weapons
- Attention
 - requires perception
 - requires a good physics engine
- Pathfinding
- Spatial reasoning
- Anticipation

Action games (Attention)

Thief 3: Deadly Shadows (2004)
Racing games

Forza Motorsport (2005)
Racing games

- Track AI
 - Neural networks (CMR2)
- Traffic (including pedestrians)
- Physics
- Tuning NPCs and vehicle parameters
 - Genetic algorithms
 - Particle swarm optimization
Platforms and sports

- Platform games
 - In 3D, since 1996 (Mario 64)
 - Camera problems

- Sports games
 - Camera problems (harder)
 - Cooperation
 - Game balance can be difficult
 - Learning
Platforms and sports

Prince of Persia (1989)

Prince of Persia: The Two Thrones (2005)
Conclusion

- Making realistic games requires more than good graphics
- Computer controlled characters must behave
 - Naturally
 - Reasonably intelligent, without cheating
- Graphics has dedicated hardware
 - More processing power available to AI
- In the future
 - Dedicated AI cards?
 - Combined AI/Physics/Graphics cards?
 - Dedicated cores?
 - From simulated to real worlds (robotics)
Robocup (Aibo league)

Clips from German Open 2002
Recommended reading

http://aigamedev.com