Today

- New names for old types
- New types
 - Enumeration types
 - Tagged unions
 - Polymorphic data types
 - Inductive data types
 - Trees
New Names for Old Types
The keyword **type** gives a new name to an existing type.

The simplest form is

\[
\text{type} \ \text{identifier} \ = \ \text{type_expression}
\]

For instance,

```
> type float = real;
type float

> type mylist = (char * int) list;
type mylist = (char * int) list
```
Type Bindings (cont.)

The new name becomes *synonymous* with the type expression. Both can be used interchangeably.

For instance,

```ml
> ["A", 1] : mylist;
val it = ["A", 1]: mylist

> (["A", 1] : mylist) =
  (["A", 1] : (char * int) list);
val it = true: bool
```
Types can be *polymorphic*, i.e., contain type variables. Therefore, type bindings can take type variables as parameters.

The general form of a type binding is

\[
\text{type} \ (\ \text{type_variables} \) \ \text{identifier} \ = \ \text{type_expression}
\]

For instance,

\[
\text{> type ('a, 'b) assoc_list} = ('a * 'b) \ \text{list};
\text{type ('a, 'b) assoc_list} = ('a * 'b) \ \text{list}
\]
All type variables that appear in the type expression (i.e., on the right) must be mentioned as a parameter (i.e., on the left).

> type predicate = 'a -> bool;
Error-'a has not been declared in type declaration

If there is just one parameter, the parentheses are optional.

> type 'a predicate = 'a -> bool;
 type 'a predicate = 'a -> bool

Type variables may be instantiated with types (as usual).

> op< : (int * int) predicate;
 val it = fn: (int * int) predicate
New Types
Enumeration Types

The keyword `datatype` declares a new type. Here, we declare an enumeration type, i.e., a type that has a finite number of values C₁, . . . , Cₙ:

```
datatype identifier = C₁ | ... | Cₙ
```

For instance,

```
> datatype direction = North | South | East | West;
datatype direction = East | North | South | West

> North;
val it = North: direction
```
The types `bool` and `unit` each have a finite number of values. They could (in principle) be declared as enumeration types as follows:

```plaintext
datatype bool = true | false;

datatype unit = ();
```
If we compare two integers a and b, then either (i) $a < b$, (ii) $a = b$, or (iii) $a > b$.

1. Declare an enumeration type `order` that has three values: LESS, EQUAL, GREATER.

2. Write a function `compare: int * int -> order` such that `compare (a, b)` returns LESS if $a < b$, EQUAL if $a = b$, and GREATER if $a > b$.

Lars-Henrik Eriksson (UU)
Solution:

```sml
datatype order = LESS | EQUAL | GREATER

(* compare (a, b)
   TYPE: int * int -> order PRE: true POST: ... EX: ...
   *)
fun compare (a, b) =
  if a < b then
    LESS
  else if a = b then
    EQUAL
  else (* a > b *)
    GREATER

order and Int.compare are already declared in the SML Basis Library.
```
Constructors

In a datatype declaration

```
datatype identifier = C1 | ... | Cn
```

C1, . . . , Cn are called constructors.

- Coding convention: constructors begin with an uppercase letter (while functions and values begin with a lowercase letter).
Constructors can be used in patterns. A constructor matches only itself.

For instance,

```
(* opposite d
    TYPE: direction -> direction
    PRE: true
    POST: the direction opposite d
    EXAMPLES: opposite North = South
  *)

fun opposite North = South
  | opposite South = North
  | opposite East = West
  | opposite West = East
```
Constructor Patterns (cont.)

Constructors can be used in patterns. A constructor matches only itself.

For instance,

(* sign n
 TYPE: int -> int
 PRE: true
 POST: ~1 if n<0, 0 if n=0, 1 if n>0
 EXAMPLES: sign 42 = 1
*)

fun sign n =
 case Int.compare (n, 0) of
 LESS => ~1
 | EQUAL => 0
 | GREATER => 1
Beyond Enumeration Types
Constructors with Arguments

Constructors in a datatype declaration may take arguments. These are indicated with the keyword `of` followed by the type of the argument.

```
datatype identifier = C1 of type1 | ... | Cn of typeN
```

For instance,

```
> datatype rational = Rat of int * int;
datatype rational = Rat of int * int

> Rat (2,3);
val it = Rat (2, 3): rational
```
Constructors with Arguments: Pattern Matching

Constructors that take an argument can be used in patterns (together with a pattern for the argument).

For instance,

(* qadd (x, y)
 TYPE: rational * rational -> rational
 PRE: x and y are rational numbers
 (with denominator <> 0)
 POST: the sum of x and y
 EXAMPLES: qadd (Rat (1,2), Rat (1,3)) = Rat (5,6)
*)

fun qadd (Rat (a,b), Rat (c,d)) =
 Rat (a*d + b*c, b*d)
Example: Geometric Shapes

A type that models circles (of a given radius), squares (of a given side length) and triangles (of three given side lengths):

```plaintext
datatype shape = Circle of real | Square of real | Triangle of real * real * real
```

Note that `Triangle(a, b, c)` does not represent a real triangle in case the largest of the numbers `a`, `b` and `c` is greater than the sum of the other two numbers.

Constructing values of type `shape`:

```plaintext>
Circle 1.0;
val it = Circle 1.0: shape
> Square (1.0 + 1.0);
val it = Square 2.0: shape
> Triangle (3.0, 4.0, 5.0);
val it = Triangle (3.0, 4.0, 5.0): shape
```
Example: Geometric Shapes (cont.)

A function that computes the area of a geometric shape:

(* area s
 TYPE: shape -> real
 PRE: If s is Triangle(a,b,c) then it must represent actual triangle.
 POST: the area of s
 EXAMPLES: area (Circle 1.0) = 3.141592654
*)

fun area (Circle r) = Math.pi * r * r
 | area (Square l) = l * l
 | area (Triangle (a, b, c)) =
 let val s = (a + b + c) / 2.0
 in (* Heron’s formula *)
 Math.sqrt (s * (s-a) * (s-b) * (s-c))
 end
The Type of Constructors

A constructor that takes no arguments has the declared type.

> North;
val it = North : direction

A constructor that takes an argument has a function type.

> Circle;
val it = fn : real -> shape
> Square;
val it = fn : real -> shape
> Triangle;
val it = fn : real * real * real -> shape

However, constructors (unlike functions) can be used in patterns!
Tagged Unions/Sum Types

Types declared via

```
datatype identifier = C1 of type1 | ... | Cn of typeN
```

are also known as tagged unions or sum types.

We can think of values of this type as either being a value of type 1 or ... or a value of type \(N\), that is tagged with a constructor that indicates which type the value has.
The argument types of constructors can be *polymorphic*, i.e., contain type variables. Therefore, datatype declarations can take type variables as parameters.

The general form of a datatype declaration is

\[
\text{datatype} \ (\ \text{type}_\text{variables}\) \ \text{identifier} \ = \ C_1 \ \text{of} \ \text{type}1 \\
| \ ...
| \ C_n \ \text{of} \ \text{type}N
\]
Example: 'a option

For instance,

```plaintext
> datatype ('a) option = NONE | SOME of 'a;
datatype 'a option = NONE | SOME of 'a

> NONE;
val it = NONE: 'a option
> SOME;
val it = fn: 'a -> 'a option
> SOME 42;
val it = SOME 42: int option
> SOME "foo";
val it = SOME "foo": string option
> SOME [];
val it = SOME []: 'a list option
```
The Option Type

We can think of values of type 'a option as representing either a single value or zero values of type 'a.

Type 'a option is useful to model partial functions (i.e., functions that normally return a value of type 'a, but may not do so for some argument values).

For instance, not every string corresponds to an integer value:

```plaintext
> Int.fromString "42";  > Int.fromString "foo";
val it = SOME 42: int option  val it = NONE: int option

'a option is more explicit than exceptions. (It requires callers to deal with the NONE case explicitly.) This may or may not be desirable.

'a option and related functions are declared in the SML Basis Library.
Polymorphic Data Types (cont.)

All type variables that appear in an argument type (i.e., on the right) must be mentioned as a parameter (i.e., on the left).

> datatype option = NONE | SOME of 'a;
Error—'a has not been declared in type declaration

If there is just one parameter, the parentheses are optional.

> datatype 'a option = NONE | SOME of 'a;
> datatype 'a option = NONE | SOME of 'a

Type variables may be instantiated with types (as usual).

> NONE : int option;
val it = NONE : int option
Inductive Data Types
The argument types of constructors may refer to (instances of) the data type that is being declared.

That is, in a datatype declaration

```
datatype (type variables) identifier = C1 of type1
 | ...
 | Cn of typeN
```

the expressions type1, ...typeN may contain identifier applied to (the correct number of) type parameters.
Example: ‘a list

The type ‘a list of lists (with elements from ‘a) is an inductive type.

1. Base case:
   
   [] : ‘a list

2. Inductive step:

   If x : ‘a and xs : ‘a list, then x :: xs : ‘a list.

‘a list could (in principle) be declared as follows:

\[
\text{datatype } \text{‘a list} = \text{[]} \mid :: \text{of ‘a * ‘a list}
\]
Example: Arithmetic Expressions

For instance, $1 + 2$, $3 \cdot 4 + 5$, \ldots

Let us define arithmetic expressions (that involve addition and multiplication over integers) inductively:

1. **Base case:**
   - Each integer is an arithmetic expression (aexp).

2. **Inductive step:**
   - If $e_1$ and $e_2$ are aexps, then $e_1 + e_2$ is an aexp.
   - If $e_1$ and $e_2$ are aexps, then $e_1 \cdot e_2$ is an aexp.
Example: Arithmetic Expressions

For instance, $1 + 2$, $3 \cdot 4 + 5$, …

Let us define arithmetic expressions (that involve addition and multiplication over integers) inductively:

1. **Base case:**
   - Each integer is an arithmetic expression (aexp).

2. **Inductive step:**
   - If $e_1$ and $e_2$ are aexps, then $e_1 + e_2$ is an aexp.
   - If $e_1$ and $e_2$ are aexps, then $e_1 \cdot e_2$ is an aexp.

```haskell
datatype aexp = Int of int
 | Plus of aexp * aexp
 | Times of aexp * aexp
```
Example: Evaluation of Arithmetic Expressions

datatype aexp = Int of int
  | Plus of aexp * aexp
  | Times of aexp * aexp

(* eval e
  TYPE: aexp -> int
  PRE: true
  POST: the value of e
  EXAMPLES: eval (Plus (Int 1, Int 2)) = 3
  *)
Example: Evaluation of Arithmetic Expressions

datatype aexp = Int of int
    | Plus of aexp * aexp
    | Times of aexp * aexp

(* eval e
    TYPE: aexp -> int
    PRE: true
    POST: the value of e
    EXAMPLES: eval (Plus (Int 1, Int 2)) = 3
    *)

(* VARIANT: size of e *)
fun eval (Int i) = i
    | eval (Plus (x, y)) = eval x + eval y
    | eval (Times (x, y)) = eval x * eval y
Data Types: Structural Equality

Equality of datatype values is *structural*. Two values of the same datatype are equal if (and only if) they are built by the same constructor applied to equal arguments.

For instance,

```plaintext
> Int 1 = Int 1;
val it = true: bool
> Int 1 = Int 2;
val it = false: bool
> Plus (Int 1, Int 2) = Int 3;
val it = false: bool
> Plus (Int 1, Int 2) = Plus (Int 1, Int 2);
val it = true: bool
```
Data Types: Structural Equality

Equality of datatype values is *structural*. Two values of the same datatype are equal if (and only if) they are built by the same constructor applied to equal arguments.

For instance,

```plaintext
> Int 1 = Int 1;
val it = true: bool
> Int 1 = Int 2;
> Plus (Int 1, Int 2) = Int 3;
val it = false: bool
> Plus (Int 1, Int 2) = Plus (Int 1, Int 2);
val it = true: bool
```
Data Types: Structural Equality

Equality of datatype values is structural. Two values of the same datatype are equal if (and only if) they are built by the same constructor applied to equal arguments.

For instance,

> Int 1 = Int 1;
val it = true: bool

> Int 1 = Int 2;
val it = false: bool

> Plus (Int 1, Int 2) = Int 3;
Data Types: Structural Equality

Equality of datatype values is *structural*. Two values of the same datatype are equal if (and only if) they are built by the same constructor applied to equal arguments.

For instance,

```plaintext
> Int 1 = Int 1;
val it = true: bool

> Int 1 = Int 2;
val it = false: bool

> Plus (Int 1, Int 2) = Int 3;
val it = false: bool

> Plus (Int 1, Int 2) = Plus (Int 1, Int 2);
```
Data Types: Structural Equality

Equality of datatype values is *structural*. Two values of the same datatype are equal if (and only if) they are built by the same constructor applied to equal arguments.

For instance,

```plaintext
> Int 1 = Int 1;
val it = true: bool

> Int 1 = Int 2;
val it = false: bool

> Plus (Int 1, Int 2) = Int 3;
val it = false: bool

> Plus (Int 1, Int 2) = Plus (Int 1, Int 2);
val it = true: bool
```
Not All Data Types Are Equality Types

Suppose type $t$ is declared via

$$
\textbf{datatype} \ ( \text{type\_variables} \ ) \ t = C_1 \ \textbf{of} \ \text{type1} \\
| \ ... \\
| \ C_n \ \textbf{of} \ \text{typeN}
$$

An instance $(t_1, \ldots, t_K) \ t$ is an equality type if $t_1, \ldots, t_K$ are equality types and the instances of $\text{type1}, \ldots, \text{typeN}$ are equality types.

For instance,

$$>	ext{Circle 1.0 = Square 1.0;}$$
Suppose type $t$ is declared via

\[
\texttt{datatype } \ ( \text{type\_variables} ) \ t \ = \ C_1 \ of \ \text{type}_1 \\
\mid \ ... \\
\mid \ C_n \ of \ \text{type}_N
\]

An instance $(t_1, \ldots, t_K) \ t$ is an equality type if $t_1, \ldots, t_K$ are equality types \textit{and} the instances of $\text{type}_1, \ldots, \text{type}_N$ are equality types.

For instance,

> Circle 1.0 = Square 1.0;

Error-Type error in function application.

Function: $=$ : $\\text{''a} \times \text{''a} \to \text{bool}$

Argument: (Circle 1.0, Square 1.0) : $\text{shape} \times \text{shape}$

Reason: Can’t unify $\text{''a}$ to $\text{shape}$ (Requires equality type)
Not All Data Types Are Equality Types (cont.)

```
datatype 'a option = NONE | SOME of 'a

> NONE = SOME 1.0;
Error-Type error in function application.
Function: = : ''a option * ''a option -> bool
Argument: (NONE, SOME 1.0) : ''a option * real option
Reason: Can't unify ''a to real (Requires equality type)

> NONE = SOME 1;
val it = false: bool
```

Lars-Henrik Eriksson (UU)
Not All Data Types Are Equality Types (cont.)

datatype 'a option = NONE | SOME of 'a

> NONE = SOME 1.0;
Error-Type error in function application.
  Function: = : ''a option * ''a option -> bool
  Argument: (NONE, SOME 1.0) : ''a option * real option
  Reason: Can’t unify ''a to real (Requires equality type)

> NONE = SOME 1;
Not All Data Types Are Equality Types (cont.)

datatype 'a option = NONE | SOME of 'a

> NONE = SOME 1.0;
Error-Type error in function application.
  Function: = : ''a option * ''a option -> bool
  Argument: (NONE, SOME 1.0) : ''a option * real option
  Reason: Can’t unify ’’a to real (Requires equality type)

> NONE = SOME 1;
val it = false: bool
Trees
Full Binary Trees

A tree where each inner node has exactly two children is called a full binary tree.
Full Binary Trees: Inductive Definition

Full binary trees (with labels of type 'a) can be defined inductively:

1. **Base case:**
   Each value of type 'a is a full binary tree, namely a leaf.

2. **Inductive step:**
   If x is of type 'a and t₁ and t₂ are full binary trees, then
   Node (t₁, x, t₂) is a full binary tree.

In SML:
Full Binary Trees: Inductive Definition

Full binary trees (with labels of type 'a) can be defined inductively:

1. Base case:
   Each value of type 'a is a full binary tree, namely a leaf.

2. Inductive step:
   If x is of type 'a and t₁ and t₂ are full binary trees, then
   Node (t₁, x, t₂) is a full binary tree.

In SML:

datatype 'a fbtree = Leaf of 'a
               | Node of 'a fbtree * 'a * 'a fbtree
Full Binary Trees: Examples

datatype 'a fbtree = Leaf of 'a
    | Node of 'a fbtree * 'a * 'a fbtree

Some full binary trees in SML:

> Leaf "Grandfather";
val it = Leaf "Grandfather": string fbtree

> Node (Leaf "Grandfather", "Father", Leaf "Grandmother");
val it = Node (Leaf "Grandfather", "Father", Leaf "Grandmother"): string fbtree
Pattern Matching: Example

Functions over trees—like functions over inductive data types in general—are usually defined using pattern matching and recursion.

For instance,

(* root_value t
  TYPE: 'a fbtree -> 'a
  PRE: true
  POST: the value at t’s root node
  EXAMPLES: root_value (Leaf "foo") = "foo"
  *)
Functions over trees—like functions over inductive data types in general—are usually defined using pattern matching and recursion.

For instance,

```haskell
(* root_value t
 TYPE: 'a fbtree -> 'a
 PRE: true
 POST: the value at t’s root node
 EXAMPLES: root_value (Leaf "foo") = "foo"
 *)

fun root_value (Leaf x) = x
 | root_value (Node (_, x, _)) = x
```
(* height t
   TYPE: 'a fbtree -> int
   PRE: true
   POST: the height of t
   EXAMPLES: height (Leaf "foo") = 0
*)
(* height t
   TYPE: 'a fbtree -> int
   PRE: true
   POST: the height of t
   EXAMPLES: height (Leaf "foo") = 0
   *)

(* VARIANT: size of t *)
fun height (Leaf _) = 0
  | height (Node (l, _, r)) =
      1 + Int.max (height l, height r)
Let’s write a function that “mirrors” a full binary tree by (recursively) exchanging left and right subtrees. For instance,
(* mirror t
   TYPE: 'a fbtree -> 'a fbtree
   PRE: true
   POST: the mirror image of t
   EXAMPLES: mirror (Node (Leaf 1, 2, Leaf 3)) =
               Node (Leaf 3, 2, Leaf 1)
*)
(* mirror t
  TYPE: 'a fbtree -> 'a fbtree
  PRE: true
  POST: the mirror image of t
  EXAMPLES: mirror (Node (Leaf 1, 2, Leaf 3)) =
              Node (Leaf 3, 2, Leaf 1)
*)

(* VARIANT: size of t *)
fun mirror (Leaf x) = Leaf x 
  | mirror (Node (l, x, r)) = Node (mirror r, x, mirror l)